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ABSTRACT

A study of the general area of problem solving with a digital computer

revealed characteristics of data that are essentially ignored or suppressed

in conventional systems. In an attempt to increase the capability and flexibility

of a digital system a new high-level language has been defined which utilizes

these data characteristics. A machine organization which implements this

language as a machine language and yet imposes no restrictions on the use of

the language has been proposed. The system will have the following character-

istics as a result of this organization:

1. Complete symbolic addressing on variable field length data. This

addressing scheme eliminates any consideration of the physical location of the

data in the system once the system has ever seen the data.

2. List and string operations. These operations include arithmetic operations

as well as those such as deletion, insertion, union, intersection, etc.

3. High to low order numeric processing. This technique permits all data

to be handled in exactly the same way.

4. Dynamic storage allocation. The machine assigns all storage and main-

tains a continuously updated blank or availability list.

5. Automatic input-output. Machine control of the storage of variable field

length data and instructions necessitates a procedure for machine control of

input-output functions.
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INTRODUCTION

Digital computers have evolved in their own technical environment,

and to a large degree independently of the problem environment. Thus it

was necessary to have computing centers with staffs of programmers as

intermediaries between machines and users. As the inadequacy of the ar-

rangement became apparent. problem-oriented languages were written,

with compiler programs to allow the machines themselves to do the conver-

sion to their own (machine) language. Accommodating to the nature of the

computer ir: this way still was not the answer from the scientist's or experi-

menter's point of view, for there remained an enormous commitment of

processing (compiling) and debugging prior to the first feedback of results.

Furthermore. it proved necessary to write compilers for many problem

fields, which gave this mode of solution a patchwork look. For these reasons,

we decided to attack the problem at its roots by changing the fundamental

nature i. e., the organization of the computer itself. We took it as the

aim of our work to allow the experimenter to use the computer as directly

as possible as an experimental tool.

We reasoned that "data" upon which machines operated have certain

similar characteristics even though problems in which the data are used

vary. We therefore began by making a study of the nature of data. In

general, data is not just of the form acceptable by most present day com-

puters--a contiguous string of fixed length, fixed point data, but is variable

field length, variable format, structured, and not necessarily contiguous.

For example, a three-by-three matrix is a string of nine data symbols. But

more than just a string of symbols, a hierarchy or grouping is usually im-

posed on the string. In this matrix example, the grouping consists of symbols

which are contained in rows in a matrix. This is a simple grouping The

English language, considered as data, is grouped as words in phrases, in

sentences, in paragraphs, in chapters, in books, and in libraries. No matter

what one calls these groupings, the structure they indicate does exist in data.

Clearly each symbol in a string of data could contain any number of characters.
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Further, a string of data need not he contiguous. In text, for example,

a footnote is part of a string, linked (by a symbol) but physically removed.

It is necessary to have a way of storing non-contiguous data in the computer

and of providing linkages. Where such data applies to many strings, it should

be stored once and linked as necessary. An analogy is a reference in text

cited frequently though given only once. Insert procedures involving the

movement of entire strings of data are inefficient and should be unnecessary.

If the data to be processed has variable field length, variable format,

structure, and is not necessarily contiguous, any language or notation to

describe the data or operations on it must not restrict but take advantage of

this form. This leads to the following implications concerning the language

and the system:

1. That it be able to handle variable field length data and instructions.

2. That it be able to maintain the structure of the data internally.

3. That it be able to use and operate on this structure.

4. That it be able to handle symbolic addressing of the data.

5. That it be able to interpret links in the data correctly.

(;. That it be able to insert links in the data when necessary.

In addition, in order to be as general as possible. the machine system

should not impose limits on the number of levels of links, the number of names

in the data, the size of the data or instruction fields, etc.

The language must include operators to permit the three basic data operations--

creation, movement, and destruction. The methods by which data can be created

are limitless. Some, however, are more commonly used than others. These

include: Add, Subtract, Multiply, Divide, AND, OR, NOT, and Reproduce.

Basic data movement operations include Insert, Separate, and Join. Data

destruction is accomplished with a Delete operation. All of these operators must

be defined for sets or strings of data as well as single fields. Probably the most

important feature of such a high-level language is the ability to easily define new

operators. This ability to define operators must be simple and flexible, and the

execution of the resulting subroutines must be fast and efficient. There should
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be no limit on the number of levels of subroutines; that is, subroutines

must be able to contain other subroutines which can contain other subrou-

tines, etc.

The use of the language should reduce the need of a program controlled

housekeeping to a minimum. As examples, the assignment of storage space

should be completely automatic, and data operations should be independent

of data format; that is, if the data is not in the proper format for any given

operation, machine control will do the necessary conversion from any per-

missible format to the desired one

In order to implement this language efficiently, a completely new machine

organization has been evolved. This organization has been determined only

by the above goals. This has meant new concepts in the organization of the

storage, of the process unit, of the input-output, of instruction and data flow

paths, of controls, etc.

The following sections describe the characteristics of the data, of the

language, and of the resultant machine organization.



4.

DATA

It was indicated in the introduction that data has structure. It may be

a simple structure such as rows and symbols for a matrix or it may be

the complex structure such as that in the English language. In any case

the symbol is the lowest meaningful grouping--e. g., the character 'rb"

has no meaning, but the characters "ball" do represent something and,

therefore, make up a symbol. The four characters b-a-l-1 are a symbol

for the physical object, a ball.

No matter what these groupings may be called, they do exist within

the data and are indicated by identifiers. These identifiers are usually

special symbols which indicate the end of a group and the start of a new

group. For example, a record mark * indicates a boundary between two

records. Many different such marks have been used, depending upon the

names which have been given to the grouping. In order to avoid unnecessary

confusion, the groups

Character

Symbol

Phrase

Sentence

Paragraph

Chapter

Book

Library

shall be used throughout. The identifiers associated with each group shall

be as follows:
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Group Identifier

Use Mention

Character (Implied) _

Symbol @ _)

Phrase 2

Sentence

Paragraph 4)

Chapter -5

Book

Library 7

When the structure of a string of data or instructions is to be identified,

then the "USE" identifiers are used. If some group of data is being referred

to in the instructions, then the "MENTION" identifiers are used. The D
identifier will indicate the end of a symbol and the start of a new symbol.

These identifiers form a hierarchy in that a 2 also implies a .l, , a (3

implies a t , and a (1 , etc. f more than one identifier ever appear

together with no other characters separating them, all but the highest

identifier will be neglected and dropped. Each symbol may contain any

number of any characters. Each phrase may contain any number of symbols,

etc.

The names of data will appear with the data itself. A name can be given

to any string of data at any level from Symbol to Library. This string may

also contain named groups of data. Thus, named groups within named groups

are allowed. The name character n will surround the name when it appears

with the data. The first character following the second n will be a "MENTION"

identifier which will indicate the level of the data being named. If this

mention identifier does not appear with the name, then the name is assumed

to name data at a level indicated by the first following "USE" identifier. For

example, a data string will appear in the data storage as
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nADAMn(4nABELn jn EVEp In 2)'4,....n EVEp ' n

Here ADAM will name the complete paragraph; ABEL will name the first

sentence in that paragraph; EVE p Iw i] name the first phrase in the first

sentence; EVE p II will name the second phrase in the first sentence. The

names themselves may he formed from any combination of any number of

the general characters A- Z, a- z, 0- 9, 0- 9' etc.

Certain operations require numeric data. Numeric data may contain

any number of the digits 0 through 9 and may contain at most one of each of

the characters +, -, . (decimal point), and exponent. Together these repre-

sent a unique number. However, such a number can be expressed in many

ways. Examples of permissible data format external to the machine are

as follows:

(19)

"j) -19. 76 i2

1 ex + 02 +.1976c1

In such numeric data, the decimal point is assumed to be at the right

unless it is written elsewhere. A decimal point can occur anyplace in a

number if the number does not also have an exponent. If the number is

written with an exponent, then it must be expressed so that the mantissa

is greater than or equals 0. 1 and less than 1. 0--the decimal point must be

at the left. The number is assumed to be positive unless otherwise indicated.

If, however, the number is written in exponential form with the exponent

preceding the mantissa, the sign of the number must be written.

Some operations require binary data. Such data may contain any number

of the characters 0 and 1. Each symbol of binary data should begin with the

base 2 indicator L.

A data string may be linked to another data string by means of a G) link

character. Whenever a (J is met in a string of data, the data indicated by
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the name following the kV will, in effect, be considered to be part of

the original string. A given string of data can be so linked to many data

strings. For example, in the data strings

SA n ~( Brown (D is Q a ® Des 1- school (Q with 1 many

Des () students (4)

n Des n ) very (D good (2

the fourth and ninth symbols of A are both "very". Thus, the data string

called A is, in effect,

n A n (4) Brown () is 1) a C() very . good C ) school (.i) with (Z many

very 01 good students
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PROPERTIES OF THE LANGUAGE

The language will consist of verbs, nouns, and modifiers, and rules

for their use. These rules are the syntax of the language. Much of the

power of the language depends on the syntax. This syntax should be simple

and direct but should allow a great flexibility of use. These rules for use

should be generally applicable.

An English-like structure is used. The operators are classified as

nouns, verbs, adverbs, and adjectives. A noun with any number of adjectives

modifying it will make up a noun phrase. The noun phrase must always

indicate data contained within the extent of the name used. A verb and

any number of adverbs modifying it will make up a verb phrase. An operation

is a combination of at least one verb phrase and one noun phrase which

accomplishes some process (for example, A + B is an operation). A

sentence will consist of at least one operation. All operations in the

sentence are dependent on the result of other operations in the sentence

and are syntactically independent of operations in other sentences. In

general, the process to be performed and where to place the result, if

any, must be specified in a sentence.

Some verbs require only an object. Other verbs require both a subject

and an object. Still others require any number of objects. A subject or

object can be a noun phrase, an operation, or a group of operations. The

subject of a verb is assumed to be the result of all operations which preceded

the verb in the sentence. If a parenthetical phrase precedes the verb, then

only this phrase is the subject of the verb. Exceptions to this are verbs

such as *, ,, and AND. Here normal rules of precedance apply. Any

number of parenthetical phrases may be used, both with algebraic and non-

algebraic operations.

The object of a verb phrase is the following noun phrase only. Again,

if a parenthetical phrase follows the verb, then this parenthetical phrase

is the object. If several objects are required, each object should be
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separated by a comma (separator). Each of these objects may be a noun

phrase, an operation, or a group of operations.

All adjectives will follow the modified noun. A given noun, however,

may have any number of adjectives modifying it. An adjective is considered

to modify not just the noun, but the noun as modified by any adjective

preceding the particular adjective. An adverb will precede the modified

verb. Again, a verb can have any number of adverbs modifying it.

A name may be given to a sentence or group of sentences at any level.

A name may not be given to a part of a sentence in instructions. Named

sentences or groups of sentences may be contained within other, larger,

named groups of sentences. A name of an instruction or group of instructions

must be defined as a verb. For example, an instruction might be written as

follows:

vStartv 3A + B -C

A named verb contained within another verb is considered to extend to the

end of the highest named verb in which it is contained.
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NAMES AND SYMBOLIC ADDRESSING

Names of data and instructions may contain any combination of any

number of the general characters. In the machine language all data and

instructions are referenced by their names. A character combination in

the instructions can be operated upon only if it is interpreted as a literal.

An absolute address, direct or indirect, will never appear in a program.

The machine itself will assign locations in storage to named sequences of

data and instructions. In order to accomplish this, a fixed length table

with two characters (16bits)per entry is provided. The address of a location

in this table is derived from a name. This mapping may be simple. For

example, if 4096 locations are provided, then the middle six bits of each

of the first two characters of a name may be used to obtain a location in

the table. Of course, any other mapping technique may be used; a hash

address scheme using every character of a name, for example, may be

more efficient. All names that are being used and which map to the same

location in the table will be contained in a closed, linked loop in the main

memory. The address in a location in the map table will be that of the name

last used in the corresponding loop. Fig. 1 demonstrates the construction

of such a loop. In this example, the first two characters are used to derive

a location in the table. Thus, all names starting with a particular pair of

characters will be contained within a loop. The "MA" loop containing the

names MAD, MATRIX, and MAUD is shown. The name MAD is stored at

location yy. With the name MAD, is a link address to the next name in the

loop, MATRIX. Two addresses follow the name MAD to indicate the location

of the "current" item and beginning of the data specified by MAD. Similarly,

at location xx, the name MATRIX is followed by the link zz which is the

location of the next item in the loop, MAUD. Following MAUD is a link yy,

which closes the loop. In the table location is the address zz, of MAUD,

which happened to be the last name used of this loop. In the example, the

noun MATRIX is to be found. This name maps to the 'MA" location in the



MA TRIX

MAP

LnMAD© X X CA DS
y y

n MATRIX n @ z z CA DS
x 

x

n MAUD n 14i y y CA DS
zz

FIG. I SYMBOLIC ADDRESSING MAP AND NAME LOOP
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table which gives the address xx. At zz, the name MAUD and MATRIX

are compared. These are not equal. The name at yy is next compared

with MATRIX. Since the comparison again fails, xx is accessed and the names

compared. The successful comparison locates data whose name is MATRIX.

If a name which is not contained in the loop, MATE, for example, is

defined, every name in the loop will be compared with MATE. After

going completely through the loop with no successful name comparison,

the new name is placed in some available location, say ww, and a new

string created. The link address associated with the first item in the

loop--here zz with MATRIX--is placed with MATE and the address ww

stored with MATRIX. The resulting name loop is shown in Fig. 2. Similarly,

when a name is being deleted, the link addresses of the preceding and following

names are adjusted to again form a closed loop. The novel feature of this

symbolic addressing system is that the size and number of names is limited

only by the capacity of main storage. There may be any number of names

of any size in a loop. The number of loops is limited by the size of the

table and determined by the names in use.
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n MA n xx CA DS
yy

n MATRIX ii ww CA DS
x

nMAUD n Jyy CA DS
zz

NMATE (Izz CA DS
ww

FIG. 2 MODIFIED NAME LOOP
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SPECIFICATION OF DATA WITHIN STRUCTURED STRINGS

Particular items within a named data sequence are indicated by means

of the L) j, i $ j, and "i 4 j adjectives. In the data string

n An 3)--- 1--- 2 --- 1 ---

A names the whole sentence. The first phrase in this sentence is indicated

by the noun phrase A 2 0. The second symbol of the second phrase is

indicatbd by A 2 1 1. In a similar manner, every part of a named

string of data can be indicated. Thus, an adjective _ t j will indicate the

jth item at level 1) from the point previously specified. The i' $ j

adjective has the same effect except that it will also set a "current"

indicator at the item referenced. Thus, the noun phrase A . t 1 1 $ 0

will specify the first symbol of the second phrase of A and mark this symbol

current item of the data sequence named A. The adjective L 4 j will

find the jth item at the i th level following the "current" item and set

this new item as the "current" item. If, for example, succeeding symbols

in a string are required, these may be indicated by the noun phrase A 1) 4 1.

Each time this noun is interpreted, the next item in A will be indicated

without any indexing or other change to the program. In order to perform

this type of addressing, the general form memory organization shown in

Fig. 3 will be used.

As data or program is input into the machine, it v.-ill pass through the

input control. The input control will break up the information into machine

words for storage in the machine. The beginning of each new classification

of data, or every data identifier, will always begin a new machine word.

The input control will scan the input for data identifiers and form the variable

length block into machine words for storage. The input control will also have

partial control over the special control planes associated with the memory.

There will be one control plane associated with each data identifier to be

used in the system. Whenever an identifier is detected in the input

information, a core will be set in the plane identified with this character
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in a position equivalent to the address in which the machine word containing

this character is being stored. Similarly, a core will be set in the same

position in all lower levels of identifiers explicitly stating what is implied

in the data. If an identifier is detected before the storage buffer register

is filled, null characters will be inserted to fill out the machine word, and

then the word is stored. The identifier will be held by the input control

until the storage buffer register is again ready to accept data and will be

inserted as the first character of the machine word being formed. When

this word is ready for storage, the appropriate related cores will be set in

the special control planes. All information will be input in this manner.

The name symbol, verb symbol, and key symbol will also start new

machine words when detected by the input control, and marks are set into

a special core plane. The use of this mark will be discussed later.

Normally data will be stored in 8-bits and parity outside of the machine

whenever possible. This same representation will carry over to internal

storage for all alpha-numeric symbols. Certain symbols--those marked

as numeric or logic--will be packed for more efficient operation. The input

control must detect a numeric field as defined in a previous section and

set up the normalization operation. Packing will occur during this latter

operation. Logic data will be indicated by a special character. An operation

similar to the normalization procedure will be initiated by the detection of

this special character by the input control.

With this structure of data stored in the memory, it is possible to

find any particular item in a string relatively quickly. Let us say we are

looking for

A@f 2 t 1 k t 2

The machine will first find the beginning of the string named A in the ma, rer

described previously. Before attempting to describe the search for the

specified part of A, consider the organization of the special core planes.
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There will be one core plane for each data identifier indicating one level of

classification. Each core in this plane will represent one machine word in

the main store. The special core planes will be used in a 2-D memory

organization so that it will be possible to gate out the contents of 128 cores

in one read-write cycle. If a core has been set to a "1", this implies that

that level identifier or one higher occurs in the associated machine word.

Therefore, by using appropriate circuitry, one is able to scan the contents

of a row of one of the special planes from either right or left to determine

which of the 128 machine words contain the identifier in question.

The above discussion has assumed that the extra core planes were a

separate entity. It is also possible to select a portion of the main store

for assembling this information. Even though the main store has a 3-D

organization, it is possible to organize it such that the location of identifiers

in blocks of machine words (probably 64 at a time) is available in one read-

write cycle. This is the organization proposed for the system being designed.

The search for the location of the data of the above example would

proceed as follows:

1. Locate the beginning address of the block called "A".

2. In the 4 level plane read out the row in which a location corresponds

to this address.

3. Begin the search for 4) marks at this address. As a ( mark is

encountered, count this mark and compare the total with that obtained

from the adjective evaluation. Continue the search if the two numbers

do not agree.

4. If three @1§ marks (magnitude of number in adjective incremented by 1)

have not been located and counted by the end of the row, increment

the appropriate rings and read out the next row.

5. When three (a) marks have been counted, store the address associated

with the last one located. Then read out the ( level row containing

this address.
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6. Begin searching in the above manner for the second (3® mark

starting at the address of the third (i mark. When this is located.

store its address and proceed at the i level.

7. When the address is finally located, the machine will look to the

instruction control to determine what to do next. It is possible to

operate on any information which can be located in the described

manner from this newly located point in the data.

The absolute address of the current item in a data string is stored A'ith

the name of the string. Thus, when the adjective is(V i, the scan is begun

at this address; and when the described point is located, the current address

will be changed.

In order to perform the input procedure described in this section and

also to perform some operations such as insert and delete which will be

described, the memory organization must be capable of determining and

remembering blank memory locations. A special core plane is included

to perform this function. The extent of a blank sequence is determined

before the location of the sequence is placed in the blank plane.

The special plane will be accessed in exactly the same manner as the

other special core planes. In this case a core associated with the address

of the beginning of the sequence will be set and one associated with the

address immediately following the last address of the sequence will also

be set. This technique permits one to combine adjacent blank sequences.

This will be accomplished by setting an addressed core in the special plane

to a "1" if it previously was a "0" and vice versa.

Consider the following example:

x X X x

A B

C D
X X X X

AC BD
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Two blank sequences exist in memory and are labeled A and B. Two

additional sequences, C and D, are to be added. When the initial address

of C is to be set, the control will set the equivalent core to a "0" because

it was previously a "1", indicating the end of A. When the end of C is set,

the sequence now contains both A and C. In a like manner, when D is put

into the special plane, the end of D removes the beginning of B and gives

a single sequence.

A blank sequence will be available to memory control at all times.

Information relating to the address of the next blank word and the address

of the last word of the sequence is kept by the memory control. When a

blank sequence has been filled, the memory control will initiate a search

of the special plane starting at the address of the end of the last sequence.

The address of the next mark in the special plane will be the address of

the beginning of the next blank sequence. The second mark will be the end

of the sequence. These addresses will be stored in the memory control.

Thus the memory will be loaded in cyclic manner in order to reduce the

length of time necessary to locate the next blank sequence.
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SEARCH AND STORAGE OF VARIABLE LENGTH DATA

All data has been considered to be of variable length. In addition,

the programmer, through such instructions as insert, join, delete, define

can change the length of a particular string. It is not desirable, when the length

of the string is changed, to move any portion of the string in order to

make it continuous. Therefore, a means of linking disjoint parts of a string

will be provided.

This link will be composed of three characters, a special "go to"

character indicating a link and a two character address locating the next

word in the sequence. This group of characters will be placed at the end

of the machine word which would normally precede the linked data. If this

machine word contains information other than nulls in any of these three

character positions, the characters are extracted and stored in an available

word. The data to be linked is either stored in the following blank locations

or another link is provided between the "prelink" word and the linked string.

A link is placed at the end of this linked data back to the original string.

A special link symbol, ® , permits the programmer to insert common

data, which is stored once, into several strings. When this character is

recognized by input control, this special character will be interpreted as an

identifier in the sense that it forces a new machine word to be started

with this character. In this case the character is stored in the first and sixth

character positions of the new word, and the nulls are stored in the rest of

the word. The name following the ®_ character will be stored beginning

in the next word. The first time that this data is used and the symbol interpreted

as a link, the name identifying the common insert will be used to determine

the address of the beginning and end of the data. These addresses will then

be stored with the ® ) link. The name will not have to be referred to in sub-

sequent uses of the original data. At the end of the insertel, string,

will be placed a variable link. When this string is being used, the address

of the next location in the calling sequence is placed in this variable link.

Consequently, the link back to the calling sequence is provided at the time of

reference.
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Since a link indicates a discontinuity in a string of data, the location of

a discontinuity must be available when the contents of an identifier plane

are being searched and counted as described previously. Another special

core plane--the Forward Discontinuity Plane--is provided. This will be

accessed and searched in parallel with any of the identifier planes when a

forward search is underway. A bit in this plane set to "1" indicates that

a special circumstance applies to the corresponding machine word, and the

machine word must be accessed before any search can continue. In general,

a discontinuity will be indicated in that machine word and the search will

be continued at the place indicated by the link address.

It is also possible to search backward from any point within a named

string of data. However, only forward links are provided in the data. A

push down store called the Reverse Push Down Store (RPDS) is used to

store the reverse links generated as a forward search is conducted. Since

one cannot access any piece of data beyond the extent of the name indicated,

it is normally true that a forward search must precede any backward search

and thus the reverse links are always provided in the RPDS. A Reverse

Discontinuity Plane will also be provided to indicate the special circumstances

that are pertinent to a backward search.

Let us say we are given the string A stored in memory as shown in Fig. 4.

In this string there is a discontinuity at location (yy - 1). This is indicated in

the forward and reverse discontinuity planes. The beginning of the strings

are indicated in the reverse plane. The ends of the strings are indicated

in the forward plane. It is required to find

A @t 3( -2

Once A has been found, the ©,) and the forward discontinuity plane are

accessed and the count begun. At yy - 1 a discontinuity mark is reached.

The machine word is accessed for the link address xx and the address (yy - 1)

placed in the RPDS. The / and forward discontinuity plane are accessed at

xx and the search continued. At the end of the linked string, the same situation



22.

0p

RD

Fl)

y y

u A u© a b r x e

RDp

FDp

xx w w zz

0c 0 dry

FIG. 4



23.

is indicated. The address zz is placed in the RPDS and the search is

resumed at location yy. The second (Z mark beyond but including this

point is the one indicated by A 20 t 3 (or determined by a count of the (g

marks as we have been searching). The search is then continued at the

one level and in a reverse direction as indicated by the next adjective I') t - 2.

At this time, the address zz is at the top of the RPDS and the address (yy - 1)

below it. The CI) and Reverse Discontinuity Plane are accessed and the

search and count are continued backwards. Again at yy - 1, a discontinuity

is searched, but this time the link address is obtained from the RPDS. Thus,

the search is continued at zz. The next (1 is the one desired so the search

stops at this point and the RPDS is cleared since there are no further

adjectives modifying the noun A.

If the noun phrase had been,

A ( l 4 0 i,-2

and the current address was ww, a slightly different situation exists. After

the name is located, the first adjective indicates the current symbol. This

address is determined. The next adjective specifies a backward search from

this point. The (J and Reverse Discontinuity planes are accessed and the

search initiated. However, the search will stop at xx, and the word accessed.

In this case, the controls will determine that this word is the beginning of a

linked string of data but that the RPDS is empty. Consequently, a forward

search out to this point must be accomplished so as to build up the RPDS.

The backward search can continue as soon as this operation is complete.
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ARITHMETIC OPERATIONS

One of the considerations used in the specification of this system was

that all data must be considered to be variable field length. In this situation,

numeric processing becomes more difficult when considered in the conventional

manner.

A number of numeric operations are basically high to low order operations.

These include input, output, division, comparison, and normalization.

Considering the problems of implementing these operations together with

those of the arithmetic operations, it was decided to process all data high

order to low order. The effect of the extra complexity that may result in

the process unit is hopefully offset by the increased efficiency of the system.

Basically, the addition of two numbers serial by character is quite

similar when done either high order to low order or vice versa. In the

latter case, two digits are added producing a sum and a carry or no-carry.

The carry, no-carry information is stored for usp in the next cycle--the

addition of the next higher order pair of digits. In high to low order operation,

the results of an addition are still a sum digit and a carry, no-carry indication.

In this case, however, the sum digit is stored until the next cycle so that it can

be modified by the carry, no-carry result of that operation.

However, there is a complication in high to low order processing. It

can best be illustrated by an example. Consider the addition of the following

pair of numbers:

24444 n

+ 35555 m

where n and m are any digits. Proceeding from left to right, the first sum

is 5 with no carry. The 5 is placed in a buffer and the next pair of digits

added. The result is a 9 with no carry. The 5 is now gated to a temporary

store and the 9 into the buffer. The following cycle also produces a 9 and

no carry. The previous sum is put into the temporary store and the nine

into the buffer. This procedure continues until the last cycle. If m + n
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produces a carry, this carry will not propagate through the string of nines

formed and modify the first non-nine digit to the left of sequence in the

result. Thus, the string of nines and the next higher order digit must be

available to be changed by the carry as it is propagated.

One technique which accomplishes this is to avoid outputting any nine

or digit which is in the next higher order position above a nine until it is

known whether or not there is a carry to be propagated. This involves

storing the next higher order digit (NHOD) and the ensuing consecutive

nines until a non-nine digit is produced. At this point, the carry, no-carry

information is consulted, and the NHOD and the nines are outputted after

being incremented by one or zero.

When the first nine in a string is produced. the NHOD is already in

a one digit temporary store awaiting carry, no-carry information from

that cycle. To avoid outputting anything until a possible carry propagation

can occur, the nine output is counter, and the NHOD output is prohibited.

Since only nines need to be stored in this manner, a simple counter is

sufficient to keep track of consecutive nines.

Finally when the output of the process unit is a non-nine digit, the

NHOD is outputted after being modified by the carry, no-carry information

of this cycle. The counter is then decremented by one and a nine outputted.

This digit is also modified by the carry, no-carry information. This procedure

is continued until the counter is cleared. The non-nine digit is placed in

the temporary storage, and the processing continues on the next pair of digits.

Basically, then, the procedure is to count the nines as they are produced

to inhibit all process unit output until a non-nine is detected, and then to

correct for the carry as the digits are outputted.

High to low order subtraction offers no additional complexity over that

present with addition. Subtraction may be accomplished by complementing

the subtrahend and adding the result to the minuend. If the nines complement
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is used, the addition proceeds with exactly the same rules for nines handling

and carry, no-carry modification as was used for addition. If the difference

is in non-complement form, a 1 must be added to the lowest order digit

to take care of the end around carry. If the 10's complement is taken,

zeros must be counted in the same manner as the nines were in addition,

and the output must be decremented by zero or one to effect the carry, no-

carry propagation.

Complemented answers will be avoided by always subtracting the smaller

magnitude number from the larger. If this condition does not exist initially,

the roles of the minuend and the subtrahend can be interchanged by changing

the true-complement sense of both operands and changing the sign of the

result.

The need for a reversal can be established only after determining

which operand is larger, which in turn depends upon the magnitudes of

the highest order not equal pair of digits in the operands. The relative

magnitude of the first pair of unequal digits sent to the process unit will

determine if a reversal is necessary when using high to low order processing.

The results obtained from higher order pairs of equal digits (if any) will

be the same whether a reversal occurs or not. Thus, if a reversal is

necessary, only the digit cycle in which the need for reversal is detected

must be re-run. With or without reversal, the remainder of the subtraction

is completely normal. In either case, only one pass through the process

unit is necessary. This is a distinct advantage of high to low order processing.

Multiplication and division offer no additional problems. Multiplication

may be done either by repetitive addition or by multiplication of multiplier

and multiplicand digits in an N-tupler and by addition of the result to the

partial product. In either case, the addition will be performed as described

above. If N-tupling is used, the multiplication itself is insensitive to the

direction of processing. Similarly, division may be done by repeated
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subtraction, accomplished as described above, or by the estimation of a

quotient digit, multiplication by the divisor digits, and subtraction of the

result from the dividend. The subtractions may be performed as previously

described, and the multiplication is insensitive to the direction of operation.

The numeric fields to be processed normally are in normal form for

an arithmetic operation. Normal form in the system is considered to be

exp + -- +------

or exponent character, sign, two digit exponent, sign, implied radix point

and mantissa. Usually numeric fields will be normalized during the input

operation. A numeric field is a field containing only numeric characters

(this includes exponent character, radix point and signs). However, a

radix point must occur if the field is to be stored in normal form.

Addition and subtraction can be done on integers without forcing the

operands to be in normal form. This ability is included in the system to

make indexing as efficient as possible. However, both operands must be

in this form, or both will be normalized before the operation begins. The

operands must be normalized for multiplication and division.

A two accumulator system is used with the process unit. High to low

order multiplication and division are such that the additional controls

necessary for use with a single accumulator require enough extra hardware

and slow the operation enough that a second accumulator is justified.

(This second accumulator also speeds up some of the other automatic

housekeeping and data handling chores in the system and could be justified

nearly on this account alone.)



28.

EXTENSION OF THE LANGUAGE

The most important property of the machine language is its ability to

be expanded. This ability is accomplished through a means similar to the

method used to construct subroutines in present day computers. However,

once an operation is defined, it can be used in the same way any other operation

in the language is used. There are no special rules for the use of these

defined operations.

In the language some verbs, modifiers, and certain nouns have been

defined and each assigned a special symbol. However, any combination

of general characters may be used not only as a name for some data but

also for some sequence of instructions. The only requirement for a particular

combination of letters to be used as the name of an operation is that this

combination not be used with any other meaning either as an operation or as

a noun; that is, it must have a unique definition.

New operations may be defined using the previously defined operations

and nouns. In addition, the noun "2p n" is available for use in communication

between the definition and the use. This noun will indicate the nouns included

in the calling sequence. If any one noun in the calling sequence is required--

the nth noun, for example--then this is indicated by writing oP n. As an

example, let us define some verb "triple add" as follows:

v triple add v 3, .22 1 + 2p 2 + 2p 3 (-
The instruction

' (triple add, A, B, C) -D 3.

will place the sum of A, B, and C into location D.

The simple rule for the formation of a defined operation is that the last

sentence of its definition must be able to replace the calling expression

without violating any syntactic rules. In this replacement, the first and

last identifiers in the last sentence of the definition are neglected. In the

example above, the rule was obeyed since (3- (A + B + C)-D 3, is a complete

sentence.
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In defining a new operation, it is permissible to use other defined operations.

An operand noun may, in turn, refer to another operand noun. For example,
s

let us define the operation sq p rt as follows:
5

vsqp rtv op 1 -Xi

(Xi - Xj.5 * (Xi + 2 1/Xi)-t

until (it - Xj) abs < E

3Xi

s s
Further, we can define the operation sq p root using sq p rt as follows:

S 5'

vsqp rootv'3) (sqp rt, 2p 1)- 2p 2 3)

Thus, the instruction ®) (sq p root, A, B) (3, will obtain the square root of

A and place this in B.

There is no limit to the number of operands nor to the number of levels

in a defined operation.

A Subroutine Push Down Store (SPDS) will be used to store the addresses

to which subroutines must return when they are completed. Whenever a

name in an instruction is found to be a defined operation (surrounded by v

marks), the address of the name location in the instruction is placed in the

SPDS and control is transferred to the indicated subroutine. When the

subroutine is finished, control is returned to the point indicated by the top

address in the SPDS. Because there is no limit on the size of the SPDS

(other than the size of main memory), there is no limit on the number of

levels of subroutines. A defined operation may use a defined operation,

may use a defined operation, etc. These addresses in the SPDS may also

be used to obtain the appropriate parameter whenever an 'operand" noun

is mentioned. A special table, however, will be used for this purpose in

order to make the interpretation of subroutines more efficient. Whenever

a defined operation is found, the absolute addresses of its parameters are
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placed in a table. When a subroutine is first encountered in the original

program, the first parameter is placed in location 11 (corresponding to

the first parameter, first level), the second in 21, etc. If another subroutine

is reached within the first subroutine, the absolute address of its parameters

are placed in locations 12, 22, 32, etc. If an operand noun, say operand m,

is reached in subroutines at level n, then the absolute address corresponding

to this noun can immediately be found at location m, n in the table. The

o, n location at each level is the absolute address of a temporary result

string used at the particular level and addressed at each level by the noun

temp. The size of this special table will limit the number of parameters

and number of levels at which this interpretation can be efficiently performed.

The table used in this system will allow 32 levels and 9 parameters at each

level to be evaluated efficiently.
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INSTRUCTION SEQUENCING

As discussed in previous sections, instructions in the system language

are sentences within some defined operation. If the defined operation is

at level 0 (the main program in the usual sense), the system will step

through this operation, sentence by sentence. Each sentence in this case

must be syntactically independent and complete. The execution of the

sentences will continue to the end of the sequence in which it is started

unless a programmed transfer to another defined or named operation is

encountered. This is the usual transfer encountered in a branch instruction

in a conventional system. If another defined operation is used in a noun

phrase in a sentence, control will be transferred to that operation and

returned to the sentence as soon as the operation has been completed and

the resultant noun phrase evaluated. In this case, the detection of the com-

pletion of the execution of the operation and the return are automatically

determined and need not be programmed explicitly.

The proper sequence of the operations is accomplished through the

use of a push down store. This store will serve as a means of reversing

the sequence of any part of an instruction when this is necessary for proper

evaluation. This storage will also save the starting point of any recursive

loop in the program. The effect of each operator and operand on its sequencing

depends on the verb itself and its context. The store, itself, will consist

of a fixed sequence of memory locations. Since these will be sequential,

no linkage is necessary. However, if at any time more storage is required,

as many available machine words as necessary will be automatically added

to the push down store. At the beginning of each overflow word, will be a

link to the location of the previous machine word in the push down store.

This push down store will have the usual purpose of a "last in-first out"

storage which, in effect, reverses the sequence of items from the order in

which they are read in.
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As an instruction is being interpreted, several quantities are accumu-

lated and may need to be retained. As an example, the extent of an operand

(beginning and end addresses of its location in the storage) is determined

when that operand is mentioned in the instruction. This information is

normally stored in address registers associated with the subject and object

register storage. If the operation using this operand cannot be executed

at this time, the operator and operand specifications must be placed in the

push down store. Some special characters such as "(" or " i " must

have their machine word and character addresses stored as well as the

characters themselves. Consequently, each machine word in the push

down store will contain only one entry; that is, operand, operator, or

special character.

As the instruction is executed, temporary or partial results occur and

must be stored. These results will be placed in a temporary store which

is constructed similarly to the push down store. The words of this store

are sequential and can be added to from main memory. This store is useful

in that it eliminates machine map, search, and delete operations for these

resultant operands. The extent of the operand is noted and retained when

the items are placed in this store. The items are removed from the store

and the space made available automatically as the sentence execution proceeds.

At the end of a level 0 sentence, both the instruction push down store

and the temporary store are cleared.
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AUTOMATIC INPUT AND OUTPUT

Since the programmer has no control over where data is stored in a

proposed system and how much of the store a given block of data occupies,

the machine must have control over some input and output operations. Part

of this control is accomplished through a register in which is stored the

current size of the availability list. This availability list is a linked list

containing all the available locations in the store. The contents of the

register are used to determine when additional space is needed in storage

or when there is sufficient space to allow another block of data or instructions

to be loaded into memory. Thus, when the main store is approaching some

fraction of full capacity, it will output data. When the memory is relatively

empty, it will input data. Once data has been in the machine, the link

address associated with the names will always permit the machine to find

it and return it to the main store if necessary. The programmer need only

provide the machine with an input list indicating where named blocks are

located and a priority, and a "scratch paper" list indicating where data

should go temporarily and a priority. The final output of results will occur

as programmed.

The input list will have a sturcture similar to the data itself. It will be

a sentence whose symbols contain the name of the string of data to be inputted

and the indication of where in external storage the data is located. Those

strings of data that have the same priority are grouped into phrases. Thus,

if two strings of data will be required at a given time, they are given equal

priorities by placing them in the same phrase. The priority of the phrase

is indicated by the order in which it occurs in the input sentence. Each

symbol in the input sentence is of the form:

Alpha onuit 1

where Alpha is the name of some data string and unit 1 is the name of the

external storage. The identifier mention is used to indicate the level of

the named block to be input if the whole block is not to be moved at one time.
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A typical input sentence might be:

® Alpha (3) unit 1

1 Beta 4 unit 1

Gamma 3 unit 2

2 Matrix A 2 unit 2

1) Matrix B 2., unit 1

2 Dictionary 4 unit 1

The input list will be used when the memory load is some fraction of

full capacity. The automatic input will continue until the memory reaches

some fraction of capacity above which the input will cease at the next

permissible point. The particular values have been chosen to be . 2 and. 6,

respectively.

Data can also be inputted into the machine by instruction. First, if a

named string is defined as being the contents of an external store, the input

of the contents must occur. Next, if the operand specified in an instruction

is not in the machine but can be located by the system, enough data must

be scanned and sufficient data inputted to locate the operand. During

automatic input, the normal program execution continues and is interrupted

only by the priorities assigned to machine operations for use of the memory.

The define instruction which causes an input also includes the point beyond

which the normal program cannot proceed until the input is completed.

This permits simultaneous input and compute, with as little wasted machine

time as possible. Compute must stop while an operand is being located.

If part of a string of data is inputted, a link will be placed at the end of

the stored data to the external storage where the rest of the data is located.

The exact form of the address will depend upon the organization of the data

in the external store.
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The input list always has a current address associated with it. This

address indicates the data which is to be inputted next. When the data

indicated in an input phrase has been completely inputted, the "current"

indication is moved to the next phrase on the list. Thus, when an input

is called for, the current phrase will contain the names and locations of

one or more data strings. These strings may be:

1. Completely in the external storage and none yet inputted into the main

internal store.

2. All partly inputted into the main store.

3. Some completely inputted into the main store but some only partly

inputted.

The scratchpad list is used to specify temporary external storage for

data and intermediate results during a computation. This list has the same

characteristics as the input list with the exception that entries are placed

on this list by programmed statements. This list is used in much the same

way as the input list in that there is some fraction of full memory capacity

above which output will occur and some fraction of full capacity below which

this output will cease. Provisions are made to include the proper linking

so that all parts of the data, whether in internal or external stores, are

available to the system.

The final output of data must be programmed. When an external store

is used as the object of a define verb, a point in the program beyond which

the program execution cannot proceed is also included to permit simultaneous

output and compute. If both programmed input and output are happening

at any given time, the machine will stop at the first specified "wait" point

until both operations have been completed.
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CONCLUSION

The sections of this report have described a machine language and

organization for an experimental digital data system. This system has been

developed and designed in an attempt to provide the advanced or experimental

programmer with a tool which can be used to solve many of his problems

more easily and efficiently. It is expected that experience with this system

will point out areas in which more work needs to be done and others in

which the problem has been overestimated. It is anticipated that from such

experience more sophisticated and perhaps simpler ways of solving the

same problems that have been tackled here will be found. However, it is

felt that the first step had to be taken no matter how faltering or short it

may be. The actual evaluation of this step now awaits the finish of the logical

design and the subsequent construction of this system.
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